- V. G. Bondarenko, V. I. Glyzin,
- V. L. Shelyuto, and L. P. Smirnova

UDC 547.972

We have previously isolated luteolin, cynaroside, and isocynaroside from Sonchus arvensis L. (field sowthistle) [1, 2]. Continuing an investigation of the flavonoid composition of the plant, we have isolated another five substances of flavonoid nature.

Substance (I) with mp $310-312^{\circ}$ C (mp of the acetate $199-201^{\circ}$ C) was assigned on the basis of its UV spectrum and fluorescence to the flavones of aglycone nature. According to its NMR spectrum, the substance has no substituents apart from hydroxy groups in positions 3, 3', 4', 5, and 7 and is quercetin [3].

Substance (II) with mp 303-305°C (mp of the acetate 208-210°C) differs from substance (I) by the presence of an OCH₃ group in position 3 of the flavonol, and is isorhamnetin [4].

Substance (III) with mp 315-318°C (mp of the acetate 218-220°C is a flavone of aglycone nature. According to its NMR spectrum it has substituents in positions 3', 4', 5, and 7, the substituent in position 3' being an OCH₃ group, and it was identical with chrysoeriol [5].

Substance (IV) with mp $243-245^{\circ}\text{C}$ was hydrolyzed by acids to form isorhamnetin (II) and glucose and, according to its NMR spectrum, is a monoglycoside [d 5.88 ppm (1H), J = 8 Hz and 6H in the 3.2-3.8 ppm region]. The glucose has the β configuration of the glycosidic center, as can be seen from the coupling constant (8 Hz) and is present in position 3. On the the basis of the facts presented, it may be concluded that substance (IV) is isorhamnetin $3-\beta-D-\text{glucoside}$ [5].

Substance (V) had mp 245-247°C [α] $_D^{20}$ -59° (c 0.21; methanol-pyridine (5:1)). The products of acid hydrolysis were quercetin and glucose. The glucose was present in position 7 of the quercetin and had the β configuration of the glycosidic center (d 4.90 ppm, J = 7 Hz). On the basis of its UV, IR, and NMR spectra and a direct chromatographic comparison with an authentic sample, substance (V) was identified as quercimeritrin — quercetin 7- β -D-glucopy-ranoside.

LITERATURE CITED

- 1. V. G. Bondarenko, V. I. Glyzin, and V. L. Shelyuto, Khim. Prirodn. Soedin., 554 (1973).
- 2. V. G.Bondarenko, V. I. Glyzin, A. I. Ban'kovskii, and V. L. Shelyuto. Khim. Prirodn. Soedin., 665 (1974).
- 3. G. G. Zapesochnaya and A. I. Ban'kovskii, Khim. Prirodn. Soedin., 289 (1965).
- 4. T. S. Zurabishvili and I. I. Moniava, Khim. Prirodn. Soedin., 254 (1974).
- 5. L. Hörhammer, H. Wagner, and E. Khalir, Lloydia, 29, 3 (1966).
- 6. V. A. Kompantsev and A. L. Shinkarenko, Khim. Prirodn. Soedin., 380 (1968).

Vitebsk Medical Institute, All-Union Scientific-Research Institute of Medicinal Plants, Moscow. Translated from Khimiya Prirodnykh Soedinenii, No. 4, p. 542, July-August, 1976. Original article submitted February 18, 1976.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.